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ABSTRACT 

Although little known, mathematical morphology offers great potential in the areas 
of image enhancement, feature extraction, and object recognition. This work explores 
this growing field through a survey of established morphological algorithms and the 
development of new morphological algorithms for range image analysis. With range 
imagery, mathematical morphology is used for noise removal, 2-D feature extraction, 
3-D feature extraction, and 3-D corner extraction. 
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Notation 

B 

A@B 

AQB 

AQB 

AB 

AB 

A®T 

A,B,T1,T2,X subsets of Rn 

U union 

n intersection 

0 empty set 

complement 

x, y, z vectors in R" 

x 6 X a: is an element of X 

A C X A is a subset of X 

Ax translate of A by vector x 

{x : P) set of points satisfying property P 

ty* dual of set transformation ty, i.e., 

tf*(,4) = [V(Ae)]e 

A © B Minkowski addition of sets A and B, i.e., 

A@B = {x + y:x€A,y€B} = Uv€fl A/ 

symmetric set of B, i.e., B = {—x : x 6 B) 

dilation of A by B 

Minkowski difference of sets A and B, i.e., 

A e B = nv€B Ay 

erosion of A by B 

opening of A by J5, i.e., AB = (A Q B) © B 

closing of A by B, i.e., AB = (A © B) 0 B 

hit-or-miss transformation of A by T = (T1,T2), i.e., 

A 0 (Tl, T2) = (A 0 Tl) n (Ac 0 T2) 



/, g functions defined on R" 

Ros(f)      region of support of / (region over which / is defined) 

ip" dual of function transformation xß, i.e., 

PU) = -V>(-/) 

[/(/) umbra of function/, i.e., 

U(f) = {(x,t) : f(x) ><},i6Rn,<eR 

/ © g Minkowski addition of functions / and g, i.e., 

[/©0](z) = max[f(x -y)+ g(y)],y € Ros(g) 

g(x) symmetric function of g, i.e., g(x) = g(—x) 

f © g dilation of / by g 

U reflected umbra U = {(x,t) : (x, — t) € U} 

f 0 g Minkowksi difference of functions / and g, i.e., 

[/0 g](x) = min[f(x - y) - g(y)],y € Ros(g) 

fg opening of / by g, i.e., fg = (f Q g) ® g 

fs closing of /by g, i.e., f9 = (f @ g) G g 

Mes(X)    Lebesgue measure of set X, i.e., Mes(X) = volume of X 

{X e R3), Mes(X) = area of X (X € R2), etc. 

Pr{P)       probability of event P 

nB nB = B@B®B...n times, where OB = 0 

/ set difference, i.e., A/B = A fl Bc 

Z set representing a measuring window 

S(X) skeleton of X, i.e., {x: Bx is a disk centered at x and contained 

in X, but not in any larger disk containing Bx and included in 

X] 

S6(X)        conditional bisector of X, i.e., 

S\X) = U„>o(A' 0 nB)/[(X 0 (n + l)B) © 6B] 
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X O T thinning of X by T, i.e., X 0 T = X/(X 0 T) 

{Ti} sequence  of hit-or-miss SEs,   i.e.,   {T,}   =    {Ti,T2,...}   = 

{(T^T;'),(T2',T?),...} 

A' O {rj sequential thinning of X by {T,}, i.e., X O {^.} = (•••((* O 

r,)or2)...) 
{Tjjoo infinite sequence of hit-or-miss SEs 

x © B; Arc conditional dilation of x by B, i.e., x © B; Xc = (x © B) fl Xc 

RBg(f), RB9(f)    rolling ball transform of / by gy i.e., RBg(f) = f - /„ 

ÄB'(/) = /' " / 

7v(/i) global covariance of a set as a function of vector /i, i.e., for set 

X, A'(/i) = Mes(X n X_fc) 

C(/i) local covariance of a set as a function of vector h, i.e., for set 

X, C(h) = Pr{x,x + heX) 



Chapter 1 

Introduction 

Enabling a machine to see is very difficult; we do not even understand how we ourselves 

see. While machines cannot see very well, they are very good at processing numbers. 

Perhaps this is why modern approaches to machine vision involve much numerical 

computation. This numerical approach has one major drawback: it can be very slow, 

so slow in fact that real-time operation can be impossible. Thus, with the present 

approach to machine vision, one can see a need for fast computer algorithms and 

architectures. 

With this need for fast algorithms and architectures, the development of parallel 

image processing operators becomes attractive; rather than process a large numerical 

array sequentially, it would be faster to distribute the computational effort across 

the array, computing the result in parallel. Also, the development of general image 

processing operators is desirable; the use of a few simple operators for many different 

types of processing would greatly simplify hardware design. As we can see, general 

and parallel operators are very appealing for machine vision. 

Among the candidates for these general/parallel operators, one type stands out: 

the operators from the field of mathematical morphology. These operators show 

promise as general/parallel image operators, as well as being founded on a solid math- 

ematical basis. 



Mathematical morphology (MM) was developed in the mid-1960s by G. Matheron 

and J. Serra at the Paris School of Mines at Fontainebleau, France. Their intent was 

to build a solid mathematical foundation for studying the relationship between the 

geometric and milling properties of ores. Within this context of metallography and 

petrography, the development of MM algorithms has expanded. However, outside 

these areas, relatively little has been done to more fully explore the applications of 

MM. In particular, very few people have applied the techniques of MM to range im- 

ages, where geometric analysis seems especially appropriate. This work brings to light 

several applications of MM through a survey of established morphological algorithms. 

Also, new morphological algorithms for range image analysis are developed. 

The organization of this thesis is as follows. Chapter 2 is a tutorial on MM. 

Chapter 3 is a survey of several established MM algorithms. Chapter 4 explores 

experiments on real range data while Chapter 5 covers experiments on synthetic range 

data. The conclusion (Chapter 6) is followed by an extensive bibliography, including 

comments on many of the references. 



Chapter 2 

Mathematical Morphology 

This chapter presents the basic operations of MM and then some of the special prop- 

erties relevant to their implementation. Most of the formulas are taken directly out 

of [26,34] where other details can be found. 

2.1     Basic Operations 

The basic operations are presented in two subsections. The first corresponds to set 

MM (used for analyzing signals which can be thought of as sets, such as binary images) 

and the second to function MM (used for analyzing signals which are thought of as 

functions, such as gray-scale images). 

2.1.1     Set MM 

The following notation is used throughout: A,B,T1,T2 subsets of R"; U union; (~l 

intersection; 0 empty set; [ ]c complement; x,y,z, vectors in R"; {x : P} set of points 

satisfying property P; ^* dual of set transformation ty, i.e., ty'(A) = [^(>lc)]c. 
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Minkowski Addition and Dilation 

The Minkowski addition © is defined as A @ B = {x + y : x € A,y € B}.  One can 

show that 

A@B = \JAV= \JBX, (2.1) 
veß xeA 

where Ay = A © {y} is the translate of A by y. The set {z : A fl I?z ^ 0} of the points 

2 such that A hits the translate I?z is called the dilation of A by I?; the dilation of A 

by I? is also equal to A®B, where B = {—x : x € B} is the symmetrical set of B with 

respect to some origin O. For these and all other MM set and function operations the 

second operand will be referred to as a structuring element (SE)1. 

Minkowski Subtraction and Erosion 

The dual of © is the Minkowski subtraction 0, i.e., AQ B = (Ac © B)c. Using (2.1) 

and de Morgan's theorem, one finds 

AQB = f]Ay. (2.2) 

Note that, in general, AQ B ^ f)xeA Bx. The dual of dilation is erosion. The erosion 

of A by B is the set {z : Bz C A} of the points z such that the translate Bz is included 

in A; it is also equal to AQ B. 

Opening and Closing 

By combining the previous operations we obtain the opening and closing. The opening 

Aß, and the closing AB, of A by B are defined as 

AB = {AQB)@B; AB = (AQB)QB. (2.3) 

From the above equation, it is easy to show that Aß = ((AC)B)C, thus, these operations 

are duals of each other. AB can be interpreted as the union of all translates of B which 

are subsets of A. AB can most easily be interpreted as the dual of the opening. 

'A SE is sometimes referred to as a kernel. 

11 



Hit-or-miss Transformation 

The hit-or-miss transformation is defined as 

A 0 (Tl, T2) = (A 0 fl) D (>lc 0 T2). (2.4) 

A point z is in A 0 (Tl, T2) if and only if Tlz is a subset of A and T2Z is a subset 

of Ac. A 0 (Tl, T2) is often denoted A 0 T, where T = (T1,T2) is referred to as a 

hit-or-miss SE. 

Page 13 contains a summary of the basic operations and examples of dilation, 

erosion, opening, and closing. Example 1 illustrates these four operations in the 

continuous case while Example 2 shows the corresponding results computed for the 

discrete case. Note that the dilation and the closing tend to fill in concave corners 

and indentations; the erosion and the opening tend to cut off convex corners and 

protrusions. The size of the SE determines which protrusions will be cut off and which 

indentations will be filled in. Also, note that opening and closing generally preserve 

the size of the input set, while dilation enlarges the input and erosion shrinks it. 

2.1.2     Function MM 

The notation is: /, g functions defined on Rn; x,y vectors in Rn; Ros(f) region of 

support of / (region over which / is defined); ip' dual of function transformation t/>, 

i.e., ru) = -IK-/)- 
The umbra U of a function / is 

U(f) = {(x, t) : f(x) >t} x e Rn t e R. (2.5) 

The correspondence between a function and its umbra is unique, thus we can define 

MM function operations in terms of MM set operations on the umbras. 

12 
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Minkowski Addition and Dilation 

The Minkowski addition of / and g is defined through 

f®g^U{f®g) = U{f)®U{g\ (2.6) 

where the arrow indicates the correspondence to the umbra of the result. Dilation of 

/ by g is 

f®g-U(f®g) = U(f) ® U(g), (2.7) 

where g(x) = g(—x). 

Minkowski Subtraction and Erosion 

The Minkowski subtraction of / and g is defined through / © g —► U(f © g). The 

right hand side of this expression cannot be written as U(f) © U(g) because U(g) 

extends to —oo and, according to Equation 2.2, this would reduce the result to a 

point at —oo. However, since ® and © are, by definition, dual operations, we have 

/ © g = —[(—/) ® g]. Before continuing, we must introduce the reflected umbra 

U = {(x,t) : (x, —t) 6 U) and two of its properties 

U(f)   =   [U(-f)Y (2.8) 

Mf)®U(g)}   =   Ü(f)®Ü(g), (2.9) 

which can be easily established. Thus,2 

u(feg) =tf [-((-/)©*)]    =[#((-/) ®g)Y 
= iM-fj® U(gW   = M-f) ® U(g)}c 

= [[U(f)Y®Ü(g)Y     =U(f)eÜ(g), 

i.e., 

Erosion of / by g is 

feg^U(feg) = U(f) © U(g). (2.10) 

fQg^U(feg) = U(f) © U(g). (2.11) 

2This derivation is somewhat more direct than that given in [34]. 
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Opening and Closing 

The opening fg and closing fs of / by g are defined as 

f9 = UQg)®g\       f9 = (f®g)eg. (2.12) 

Relations (2.6) and (2.10) can be expressed algebraically as 

[f®9](x)    =max[f(x-y) + g(y)} y € Ros(g) (2.13) 

[fQg](x)   =min[f(x-y)-g(y)) y € Ros(g), (2.14) 

where, by convention, / = —oo outside Ros(f). Dilation and erosion are given by 

[f®g)(x)   = max[f(x + y) + g(y)] y € Ros(g) (2.15) 

[feg](x)   = min[f(x + y) - g(y)} y € Ros(g). (2.16) 

This leads to relatively simple algorithms for computation of the function MM oper- 

ations. Note that (2.13), (2.14), (2.15), and (2.16) are the morphological equivalents 

of the standard convolution and correlation. 

Page 16 contains a summary of the basic operations and examples of dilation, 

erosion, closing, and opening. Example 1 illustrates these four operations in the 

continuous, 1-D case while Example 2 shows the corresponding results computed for 

the discrete, 2-D case. As with set MM, the dilation and the closing tend to fill in 

concave corners and indentations; the erosion and the opening tend to cut off convex 

corners and protrusions. The size of the SE determines which protrusions will be 

cut off and which indentations will be filled in. Also, note that opening and closing 

generally preserve the size (height and region of support) of the input function, while 

dilation enlarges the input and erosion shrinks it. 

15 
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2.2    Properties Relevant to Implementation 

This section covers three of the important properties of Minkowski addition and sub- 

traction related to the implementation of the basic MM operations. 

The distributivity property is 

AQiBx^Bi)   =   (A®Bi)U(A@B2) (2.17) 

AeiBiöBi) = (AeB1)n(AeB2). (2.18) 

This property implies that one can dilate or erode A by taking (B\ UB2) piece by piece 

and then combining the intermediate results by union or intersection. This property 

also applies to functions, i.e., 

f @max{gug2)   =   max(f 0 glt f 0 g2) (2.19) 

femax(gug2)   =   min(f 0 gu f 0 g2). (2.20) 

The iterativity property is 

A0(£i0£2)   =   (^0^)0 52 (2.21) 

A © (#! 0 B2)   =   (AQB^e B2. (2.22) 

This property, which applies to functions as well, implies that one can decompose 

a SE into a Minkowski sum of simpler SEs and then iterate the dilation or erosion 

to get the intended result. This decomposition property is particularly important 

to the implementation of morphological operators on cellular logic arrays such as the 

GLOPR, CLIP, or Cytocomputer (see [53] for a comparison of these computers) which 

can access only a local neighborhood of pixels, such as a 3 x 3 window. Zhuang and 

Haralick [46] have shown how to optimally decompose set MM SEs through a tree 

search of possible decompositions. 

The property of Minkowski addition and subtraction which leads to the fastest 

implementation, however, comes from the following expressions for these operations. 

17 



Recall that for sets 

A@B   = 

AQB   = 

and for functions 

[f®9](x)   =   rnax[f(x - y) + g(y)] y € Ros(g) 

[f 6 #](*)   =   min[f(x - y) - g(y)} y € Ros(g). 

This implies that in the set MM case, the morphological results can be computed 

as logical combinations of shifted versions of the input image. In the function MM 

case, the morphological results can be computed by shifting an input image, adding 

or subtracting a SE value from the shifted image, and then taking the max or min of 

this and the accumulated result. 

2.3    Implementation 

For this work, both erosion and dilation3 have been implemented (for sets and func- 

tions) as the basic MM operations; all others such as Minkowski subtraction, Minkowski 

addition, opening, closing, etc., are implemented as combinations of these basic op- 

erations. All operations have been programmed in LISP and C under the SKETCH 

[69] image understanding operating system developed at the MIT Lincoln Laboratory. 

This tool was used for all experiments described in Chapters 4 and 5. 

3Dilation can be implemented as the complement of the erosion of the complement (duality). 

18 



Chapter 3 

Previous Work 

This chapter discusses MM algorithms developed through traditional applications 

of MM. These applications include texture analysis, defect detection, image coding, 

and biological cell analysis. Throughout the next several sections the discussion will 

be geared toward the development of an intuitive understanding of MM algorithms, 

rather than the more rigorous presentation found in [26,34]. The first sections discuss 

techniques used in the processing of range imagery in Chapters 4 and 5. The last few 

sections (morphological size and shape description, edge detection and perimeter es- 

timation, and covariance) explore several other useful algorithms which are, however, 

not used in later chapters. 

The notation is: Mes(X) Lebesgue measure of set X, i.e., Mes(X) = volume of 

X (X € R3), Mes(X) = area of X (X € R2), etc; Pr{P} probability of event P; 

nB = B@B@B ... n times1 ; / set difference, i.e., A/B = AC\BC; Z set representing 

a measuring window. 

1Oß = 0, IB = B,2B = B®B. 

19 
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Figure 3.1.    Skeletons. 

3.1     Skeleton, Thinning, and Conditional Bisector 

3.1.1     Skeleton 

A point x is part of the skeleton of the set X if the following condition is satisfied: 

• If Bx is a disk centered at x and contained in X, there is no larger disk containing 

Bx and included in X. 

The set Bx is called a maximum disk and it is the center of each of these maximum 

disks which make up the skeleton. Examples of skeletons are shown in Figure 3.1. 

The skeleton can be computed in the following way. If B is the smallest disk on the 

image grid (Fig. 3.2), the skeleton2 S(X) is given ([34] p. 389) by 

S(X)   =    U sn(X) n integer 
n>0 

sn(X)   =   (XenB)/(XenB)B. 

(3.1) 

(3.2) 

The original set X can be reconstructed from the skeleton subsets sn(X) as follows: 

2The skeleton is virtually identical to the medial axis transform [60,34]. See [34] for a more thorough 

treatment. 

20 
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Figure 3.2.    Smallest disk on the square grid. 

X = \J(sn(X)@nB). (3.3) 
n 

The capability of representing binary images as skeletons (along with the associated 

disk size for each skeleton subset) provides for efficient coding of binary images [25]. 

3.1.2    Thinning 

Another transformation which is similar to the skeleton is the homotopic sequential 

thinning. 

Thinning, denoted 0) *s an application of the hit-or-miss transformation and is 

denned for T = (T',T") ([34] p. 390) as 

X O T = X/(X 0 T). (3.4) 

An example is shown in Figure 3.3 where T" appears in black and T" in white within 

the 3x3 neighborhood. The origins of both T" and T" are at the center of the 3 x 

3 neighborhood and points of the 3x3 neighborhood which belong to neither T" nor 

T" are marked with dots. This pictorial representation (of hit-or-miss SEs used for 

thinning) will be used throughout the rest of this work. 

Sequential thinning involves thinning by a sequence 

{T,} = {T1)T2)...} = {(T1',T1"),(^,T2"),...} 

of hit-or-miss SEs. The sequential thinning of X by the sequence {T<} is defined as 

XO{Ti} = (...((XOTi)OT2)...). (3.5) 

If the sequence {T,} is infinite (denoted {Ti}oo), the input X is typically thinned until 

there is no change from one iteration to the next. 

21 
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Homotopic thinning is a special case of thinning. To describe what is meant 

by homotopic, first consider the homotopy tree associated with the set X shown in 

Figure 3.4 (shaded region). The root of this tree corresponds to the background 

XQ (i.e., the infinite connected component of Xc); the first branches correspond to 

the connected components, X\ and X[, of X adjacent to XQ\ the second branches 

correspond to the holes of X\, adjacent to X\, etc. A transformation is said to be 

homotopic if it does not modify the homotopy tree of the input set X. Thus, there is 

a one-to-one correspondence between connected components of X and the connected 

components of the homotopic thinning of X. 

Homotopic sequential thinning is sequential thinning with a homotopy-preserving 

SE sequence. An example of such a sequence is the set of consecutive 90-degree 

rotations of the Levialdi [63] letters L and L' shown in Figure 3.5. Sequential thinning 

of the set X by the sequence {£}«> (Fig. 3.5) results in a thin line drawing of X. The 

result is a kind of "skeleton", although in this case the homotopy of X is preserved. 

An example is shown in Figure 3.6. 
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Figure 3.6.    Homotopic sequential thinning. 
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The homotopic sequential thinning, in combination with the hit-or-miss trans- 

formation, can be useful in detecting certain types of defects [28,20]. For example, 

Mandeville [20] has used the homotopic sequential thinning of printed circuit board 

images to detect pixel patterns which indicate circuit defects. 

3.1.3     Conditional Bisector 

The conditional bisector is a subset of the skeleton and is given by the following 

formula ([34] p. 390, [31]): 

S\X)   =    \J(X QnB)/[(X e(n + l)B)@6B) 
n>0 

=    \J(XenB)/[(XenB)B®(6-l)B], (3.6) 
n>0 

where 9 is an integer and B is the smallest disk of the grid. Note that the denominator 

of the second expression is derived from the first as follows: 

(X Q(n + 1)B)®6B   =   (X Q (nB ® B)) ® (B ® (6 - l)B) 

=   (((X Q nB) Q B) @ B) ® (6 - l)B 

=   (XenB)B®(0-l)B. 

When 8 is one, the conditional bisector is just the skeleton. 

One interpretation of the conditional bisector is the part of the set (X Q nB) not 

reached by the set (X © (n + l)B) © 6B. If (X © (n + 1)B) = 0, then the ultimate 

erosion has been found. The ultimate erosion of X is the erosion by the largest disk 

nB such that X Q nB ^ 0. Meyer [31,28] has used this property of the conditional 

bisector (along with the thinning and the hit-or-miss transformation) for detecting 

overlapping or non-convex biological cells. A pictorial representation of the algorithm 

is shown in Figure 3.7. 
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Figure 3.7.    Application of the conditional bisector. 

3.2     Region Painting, Labelling, and Extraction 

Given the boundary X of a region (e.g. a one-pixel wide closed curve) and a single 

point x of the interior, we can use MM to fill in the region [22]. The first step in 

"painting" the region consists of dilating the interior point x by the smallest disk B 

of the grid. Then this result is intersected with the complement, Xc, of the boundary 

X. This operation of restricting the dilation to a certain region is called conditional 

dilation and is denoted x 0 B; Xc ([34] p. 393)3 . That is, 

x®B;Xc = (x®B)f)Xc. (3.7) 

The next step toward painting the region is to use the results of the first conditional 

dilation as input to the next conditional dilation. This process is iterated until the 

region is filled. 

Conditional dilation by a sequence can also be used for region labelling and ex- 

traction ([34] p. 405). If an input set X consists of several disjoint regions J\T,-, i.e., 

X = Ui-^t» we can extract and label the Xi using the following algorithm: 

'The concept of a conditional operation can also be extended to erosion, thinning, closing, etc. 
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Figure 3.8.    Rolling ball transform (I'D). 

1. Scan the input image and stop at the first point x,- € X (i = 1 initially). X{ = x,-. 

2. Ar,=X,0J5;X. 

3. If step 2 produced no change in Ar,-, go to 4, else go to 2. This fills in the A,-. 

4. X = X/X{, i = i + 1, go to 1. This subtracts out the previously labelled Ar,-. 

3.3     Rolling Ball Transform 

The rolling ball transform [40] is applied primarily to functions although the same idea 

can be extended to sets. If g is a hemispherical function, the opening fg is a function 

defining the places where the hemisphere fits beneath the surface of /. The rolling ball 

transform RBg(f) = / — fg then gives all the regions where the hemisphere g does not 

fit beneath the surface of /. This is illustrated in Figure 3.8 for a 1-D function. If the 

o 
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hemisphere g is inverted and moved above the function /, the rolling ball transform 

is denoted RB9(f) and is equal to f9 — f.A 

One application of the rolling ball transform is background normalization. Stern- 

berg [40] has used it for this purpose on images of human cells. 

3.4    Morphological Size and Shape Description 

The material in this and the next sections is not exploited in Chapters 4 and 5 but 

is included because of its importance in the classical applications of MM. Two MM 

techniques which extract size and shape information are linear erosion and the opening 

with a disk (or sphere in 3-D). 

The linear erosion ([34] p. 323) involves eroding the input set X by a segment of 

length / in direction a, B(l, a). One can obtain a size distribution for a fixed direction 

«o by 

Mes(X QB(l,a0)) where / = /0,/i,... (3.8) 

The size and shape distribution can also be measured using the opening of the 

input by nB, a disk of radius n. By varying the radius n and taking the difference 

between consecutive openings, the size and shape distribution can be measured, i.e., 

Mes(XnB) - Mes(X{n+1)B). (3.9) 

Examples of size and shape distributions (differences between consecutive openings) 

are shown in Figure 3.9. Maragos [24] has used the differences between consecutive 

openings and the dual notion of differences between consecutive closings in defining 

the pattern spectrum of a binary image. 

Both linear erosion and opening by disks have probabilistic versions ([34] p. 360). 

The primary difference is that the measurements described above are divided by the 

4Since there is no standard notation for the rolling ball transform, RBg(f) and RB§(f) were 

arbitrarily selected. 
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kfl id 
Figure 3.9.    Size and shape distributions as a function of disk size n. 

total number of occurences (in the measuring window) of the particular segment or 

disk. For example, for linear erosion measurements within the window Z, Equation 3.8 

becomes 
.   Mes(XeB(l,a)) 

Mes(ZeB(l,a))' K '    } 

3.5    Edge Detection and Perimeter Estimation 

Minkowski addition and subtraction can be used to locate edges in an image. For a 

sufficiently small disk, B, of radius r, the edges of a set X are given by 

(X®B)/(XeB). (3.11) 

The perimeter, U(X), of X can also be computed using Minkowski addition and 

is approximately equal to 

Mes((X @B)/X). (3.12) 

To see this, remember that the Minkowski addition of a small disk and the set X has 

the effect of "growing" a new layer of "skin" on X. Taking the difference between this 

new set and the original leaves only the "skin", the measure of which is approximately 

equal to the perimeter. 

Equations 3.11 and 3.12 can be extended to functions for surface area estimation 

and gray-scale edge detection by using a hemispherical function as the SE. 

m 
o 
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3.6     Covariance 

Most of the MM techniques available in the literature have come about through work 

on texture analysis. One of the most useful techniques for this purpose is what Serra 

([34] p. 271) calls the covariance. The covariance is useful for 

• extracting periodicities from what may seem to be a uniform texture 

• analyzing the superposition of scales in an image 

• detecting anisotropies at a given scale 

The following subsections discuss both the global covariance and the point covariance 

(which is a probabilistic version of the global covariance), and an application of each. 

3.6.1     Global Covariance 

If B is the SE consisting of two points {0,h} (h is a vector with magnitude \h\ and 

direction a), the global covariance K(h), defined as Mes{x : x,x + h 6 X), is given 

by 

K(h) = Mes(X 0 5) = Mes(X n X.h). (3.13) 

If k(x) is the characteristic function associated with the set X, the covariance can 

also be viewed as 

K(h)=f    k(x)k(x + h)dx. (3.14) 

The following are several properties of K(h): K(0) = Mes(X); K(h) = K( — h)\ 

■K"(0) ^ Ki)1). An example of global covariance computation can be seen in Fig- 

ure 3.10. 

In most practical situations K'(0) = lim|/,|_o — (Ä"(0) — K(h))/\h\ exists and it is 

equal to the total projection area (X 6 R3) or total projection diameter (X G R2) 

of X in direction a. An example of the total projection diameter is illustrated in 

Figure 3.11 where it is equal to £,<i,\ 
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Figure 3.10.    Global co variance (adapted from [34]). 

d. 

Figure 3.11.    Total diameter of X (ZjjdJ. 
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3.6.2 Point Covariance 

If one can observe the set X only within a limited window Z, the point covariance 

C(h), defined as Pr{x,x + h G X}, may be a more suitable measure than the global 

covariance Mes{x : x,x + h G X}.  A good estimate ([34] p. 281) of C(h) is C*(h) 

given by 
Mes((XnZ)eB) 

C {h) =      Mes(ZGB)     ■ (3-15) 

The denominator, Mes(Z Q B), is the total possible number of occurences of B = 

{0, h} within the measuring window Z. The properties of C(h) are: C(0) = Pr{x G 

X}; C(h) = C(-/i); C(0) > C(h). 

3.6.3 Applications 

The global covariance has been used to study the spatial distribution of cells in the 

embryonic ovary of a rat [10]. In this application, covariance was used to determine 

if the cells were uniformly distributed within the ovary. Once it was determined that 

they were clustered, the covariance was used at a smaller scale to measure the average 

distance between cell centers within each cluster. 

The point covariance has been used to study the relation of wood structure to 

anisotropies of shrinkage during drying [36]. In this application, tree cross-sections 

were analyzed radially and tangentially, at several scales, to find correlations between 

the wood structure and its shrinkage patterns. 
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Chapter 4 

Experiments with Real Range 

Imagery 

This chapter begins with a discussion of the concept of a range image. Following this, 

the real range data is described and related MM algorithms are presented. 

4.1     Range Images 

The value associated with a point in a range image is proportional to the distance 

between the range sensor and the corresponding point in the 3-D physical world. 

A range image can be interpreted as a 2-D function having a 3-D graph which is 

actually an inverted version of the physical surface being imaged (Fig. 4.1). Thus, 

the operation of rolling a ball above the surface of the object corresponds to moving 

a hemispherical function beneath the image function (Fig. 4.1). This inversion of 

surfaces must be kept in mind when thinking intuitively about the notions of closing, 

opening, etc. 
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Figure 4.1.    Range image generation. 
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4.2 Real Data 

The real range images are obtained from a laser radar. For each pixel in a range 

image, a radar pulse is sent out into the world and the time between the transmission 

of the pulse and the reception of the reflected pulse is measured. If no reflection is 

received within a certain time window, the pixel is called a dropout For other pixels, 

the value recorded is directly proportional to the distance to the reflection point in 

the world. 

Since the data is quantized to 8 bits, each pixel value must be within the range 

0-255. With this data set, the values 0, 1,2, and 3 turn out to correspond to dropouts. 

Note that reflected pulses which are received too early are recorded as dropouts, as 

are reflections which are received too late (or not at all). 

The radar used in this work scans a square section of the world, however, the 

output of the scanner is a rectangular image (128 x 60 pixels). This occurs because 

the vertical angular sampling interval of the scanner is twice that of the horizontal 

angular sampling interval. Because of this disparity, the original and processed images 

have been zoomed vertically by a factor of 2 for display purposes, although processing 

is performed on the original 128 x 60 pixel images. An example of an unzoomed real 

range image is shown on page 35. 

4.3 Experiments 

In this section, the problems of noise removal and 2-D feature extraction are addressed. 

4.3.1     Noise Removal 

There are two types of noise in the real range images: dropouts and outliers. As 

indicated above, dropouts have one of the values 0, 1,2, or 3, thus, they appear as 

dark spots. Outlier pixels have values far from those of neighboring pixels and 
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appear as both bright and dark spots. Since there are two different types of noise, two 

different methods of noise removal should be employed. In fact, the situation is even 

more complex since both dropouts and outliers can appear as dark spots. Therefore, 

blind removal of dark spots cannot be attempted before the dropouts are filled in. 

Thus, the proposed cleaning procedure is: 

1. Remove outliers which appear as bright spots. 

2. Fill in values for dropouts. 

3. Remove outliers which appear as dark spots. 

To perform these processing steps, only function MM and point operations are used. 

The results and the SEs which were used are shown on page 37. Each of the SEs is a 

flat 2-D function with value zero inside the region of support and origin marked 0. 

To remove the outliers which appear as bright spots, we take the pointwise min- 

imum of the original, say i (p. 37-1), and its dilation i © ä (p. 37-2), i.e., t = 

min(i,(i © ä)) (p. 37-3). If one looks at the formula for dilation (Eq. 2.15), the 

value of t at a point x, t(x), can be expanded to 

t(x)   =   [min(i,(i ©ö))](x) = [mm(t,(i © a))](x) 

=   min(i(x),max(i(x — y) + 0)) y G Ros(a). 

By noting that Ros(a) is a small donut-shaped SE, one sees that this operation has the 

effect of clipping the input i such that no pixel has a value greater than the maximum 

value of its four nearest neighbors. 

To fill in the dropouts, we replace each of them by the corresponding value in the 

closing of t by b (p. 37-4), i.e., 

tb   «€{0,1,2,3} 
u = < (4.1) 

t    otherwise. 

This has the effect of "patching up" the holes created by the dropouts (p. 37-5). Note 

that the region of support of b will determine the size of the patch. In this case the 
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region of support of the SE is 4 x 2 pixels so any region of dropouts larger than this 

will not be patched. With our data, this SE was sufficient in almost all cases. 

Lastly, the remaining outliers which appear as dark spots must be removed. This is 

accomplished in a manner completely analogous to that for removing bright spots. We 

take the pointwise maximum of u and its erosion uQä (p. 37-6), i.e., v = max(u, (u Q 

ä)) (p. 37-7). If one looks at the formula for erosion (Eq. 2.16), the value of v at a 

point x, v(x), can be expanded to 

v(x)   =   [max(u,(u Q a))](x) = [max(u,(uQ a))](x) 

=   max(u(x),min(u(x — y) + 0)) y € Ros(a). 

By noting that Ros(a) is a small donut-shaped SE, one sees that this operation has 

the effect of clipping the input u such that no pixel has a value less than the minimum 

value of its four nearest neighbors. 

About the SEs 

One may wonder how the SEs for this application were chosen. For SE a, the region 

of support was chosen to cover the four nearest neighbors. The constant value of the 

function a was chosen to be zero; changing the constant value would have had the 

following effect. If the value corresponding to a was 6, the values of the function i © a 

would have increased by 6; the values of the function i Q a would have decreased by 6. 

Thus, rather than clipping the outliers to within the max and min of the four nearest 

neighbors, they would have been clipped to within max + 6 and min — 6 of the four 

nearest neighbors. 

The shape of SE b was chosen to "patch" up a region of the image of the same 

size or smaller. Though the value of the the function b was zero, it could have had 

any other constant value and the results would have been the same. 
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4.3.2    Feature Extraction 

In most of the real range images, good features to use for recognition are characteris- 

tic object appendages such as antennas and guns. Their extraction is carried out on 

binary image silhouettes since the real range data provides only coarse 3-D informa- 

tion. A binary silhouette is produced by thresholding the gray-scale image (p. 40-1) 

at the median intensity value (p. 40-2). The proposed procedure for isolating the 

characteristic appendages of the silhouette is: 

1. Isolate all appendages with widths similar to those of the characteristic ap- 

pendages. 

2. Join isolated appendages if they are within a given distance of each other. 

3. Filter out any appendage which is too small to possibly be a characteristic 

appendage. 

To perform these steps, only set MM and point operations are used. The results and 

the SEs used are shown on page 40. 

To isolate all appendages we take the set difference of the original binary image, 

say / (p. 40-2), and its opening IA (p. 40-3), i.e., T = I-IA = ln (IA)
C (p. 40-4). 

Note that we have chosen A to be slightly larger than the appendages we wish to 

extract. 

For joining isolated appendages, we use the closing U = TB (p. 40-5). All isolated 

appendages separated by gaps less than the size of B (4 x 2 pixels) will be joined 

together. 

The last step is to filter out any appendages which are too small to merit further 

study. This filtering procedure is a two-step process. First, an image containing 

only those appendages (artifacts) which are to be filtered out is created. This is 

accomplished by using the hit-or-miss transformation and Minkowski addition. The 

hit-or-miss transformation will produce an image which is "true" (white) at every 
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location where a given pattern Tl is located, provided T2 is chosen as the complement 

of Tl in a selected surrounding window [7] (p. 40-6). Prom this result, an image of 

removable artifacts can be created by replicating the pattern Tl at each "true" value 

in the hit-or-miss transformation, i.e., V = (U 0 (Tl, T2))©T1 (p. 40-7). The desired 

result is the set difference of the image of joined appendages U and the removable 

artifacts V, i.e., W = U — V = UC\ Vc (p. 40-8). For our purposes, appendages which 

are as small as or smaller than 2x1 are filtered out. This implies two filterings; one 

for 2 x 1 pixel appendages and another for 1 x 1 pixel appendages. The intermediate 

steps for filtering out the 2x1 pixel appendages are shown in p. 40-6 through p. 40- 

8. The final result, after filtering out the lxl appendages, is shown in (p. 40- 

9). It should also be noted that if the approximate object orientation is known, 

MM techniques could also be used to distinguish between vertical and horizontal 

appendages. This is discussed further in the next subsection of this chapter. 

About the SEs 

SE A was chosen large enough so that it would not fit in the appendage region, 

yet small enough that it would fit in the body region. SE B was chosen so that 

it would connect pixels within 4 pixels horizontally, 2 pixels vertically. Ideally, .A, 

B, and (T1,T2) should be symmetric. In terms of the geometry of the world, they 

are symmetric but appear non-symmetric because the horizontal angular sampling 

interval is one half that of the vertical angular sampling interval. 

4.3.3    More Examples 

With the previous feature extraction method, no knowledge of object orientation 

was assumed. However, under certain circumstances, some assumption may be made 

about object orientation, e.g. one can assume that an object lies on a nearly horizontal 

surface. In that case, one may be able to reconnect and/or extract appendages at 

characteristic orientations.   MM algorithms which incorporate a priori orientation 
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information axe presented in the following paragraphs and typical results are shown 

on pages 43-44 and pages 46-47. 

The first example, on pages 43-44, shows techniques of function MM and point 

operations applied to a real range image. The goal is to extract the object of interest 

from the original image and to reconnect broken appendages. The SEs (or kernels) 

which are used are labelled 1 through 7. SEs 1 and 3 are small ellipsoids; the other 

SEs are rectangles of various sizes. Results at each stage in the processing are shown 

in photos A-K along with a description of the operations performed. The following is 

a high-level description of the algorithm. 

First, a relatively clean range image1 , A, is closed by a small half-sphere slightly 

larger that the widths of the gun and antennas. This removes the appendages (B). 

Note that there is one location along the gun barrel where the SE "fell into the gun 

valley" thereby leaving a mark (the "cross") directly related to the shape of the SE. 

Next, the vehicle body remaining in image B is "shaved off" (C) by using a very long 

SE which must be longer than the body length. 

After pointwise subtraction of C from B, all that is left (D) is the object plus some 

ground clutter, which is subsequently removed (E) by closing by a small vertical SE 

with length slightly larger than that of the largest clutter height. Image E therefore 

contains the isolated body. Similarly, pointwise subtraction of B from A produces a 

noisy image F of the isolated broken appendages (gun and antennas). 

This image is now processed with two independent sequences of opening followed 

by closing. In the first, opening with the small vertical SE reconnects the antenna 

fragments by eliminating the peaks between them, while subsequent closing with a 

slightly longer SE eliminates vertical appendages which are too short. The end result 

(H) is a pair of less fragmented antennas, no gun, and very little noise. The other 

sequence is very similar, but uses horizontal SE's: the result in J shows the gun, no 

antennas, and very little noise. By pointwise addition of the body image E, the 

'The cleaning procedure is described in [69]. 

42 



p 

-2, 

8: 

43 



SS 

5- 

s: 

s: 

.5 

§: 

44 



antenna image H, and the gun image J, one obtains the reconstituted object with less 

fragmented appendages (K). Image L is simply a histogram-based segmentation of K 

into two regions. 

For completeness, it should be noted that a very similar processing sequence has 

been inserted in the processing chain described in [69] to reconnect appendages prior to 

edge detection. This additional processing generally results in better range silhouette 

extraction. 

One can also use a similar algorithm using set MM to extract the object and 

reconnect broken appendages. The results of this processing are shown on pages 46- 

47. The SEs which are used are labelled 1 through 8. SEs 1 and 4 are small ellipses; 

the other SEs are rectangles of various sizes. Results at each stage in the processing 

are shown in photos A-N along with a description of the operations performed. The 

following is a brief description of the algorithm. 

The first step is to create a binary image from the original (A) through a segmen- 

tation procedure. This procedure gives a silhouette of the object with many holes and 

ground clutter (B). The holes are filled by closing by a small disk (C). The appendages 

are removed by the opening, giving an image of the object body (D). The next step 

is to detect a continuous horizontal band larger than the body, which corresponds to 

ground clutter. To accomplish this, the image of the body (D) is opened by a long, 

horizontal SE. Once the band (E) is located, it is dilated by a long vertical SE so 

that the lower half of the image (where the ground clutter appears) is entirely filled 

(F). This image of ground clutter can be subtracted from the image of the body and 

ground clutter (D) to give an image of the body and some residual ground clutter 

(G). From this step on, the extraction and reconnection of the gun and antenna is 

entirely analogous to the procedure outlined for the gray-scale case and the end result 

(N) is very similar. 
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Chapter 5 

Experiments with Synthetic Range 

Imagery 

Although MM techniques give fairly good feature extraction results with the real 

data, they are limited by several factors. The coarse range resolution of the real data 

does not provide much information on the 3-D structure of the objects of interest; it 

provides only rough silhouettes. Thus, an object cannot be easily identified if its char- 

acteristic appendages do not appear on the silhouette. Also, the angular resolution 

is very coarse compared to the dimensions of the objects of interest. This makes it 

difficult to distinguish between guns and antennas since they have approximately the 

same diameter (1 or 2 pixels). It is thus natural to ask how MM feature extraction 

techniques would work on data with higher resolution in range and angular dimen- 

sions. To have complete flexibility in investigating this question, a synthetic range 

image generator was developed. 

5.1    Data 

The synthetic range images are produced from a description of the surface of an 

object in terms of triangular facets, thus all objects in the images are polyhedra. The 
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polyhedral objects under study are free floating in space in front of a background 

plane perpendicular to the viewing direction. The horizontal and vertical angular 

sampling intervals are both one half the horizontal angular sampling interval of the 

real data, therefore zooming is not needed for display. The range resolution of the 

synthetic data is 60 times better than that of the real data, and the distance to the 

object is approximately the same as that for the real data. 

5.2     Experiments 

In the next two subsections, the synthetic data is used to explore the problems of 3-D 

feature extraction and corner extraction. 

5.2.1     Feature Extraction 

An example of a synthetic range image is shown in (p. 50-1). Note that none of the 

characteristic appendages (gun, antenna) appear on the silhouette, and that they have 

distinguishable differences in thickness. 

We can use techniques from function MM to extract characteristic appendages 

from the synthetic data . The proposed procedure is: 

1. Find guns. 

2. Find antennas. 

The results and the SEs used are shown on page 50. Each SE is a 2-D function whose 

3-D graph is a half-sphere. 

To find the gun, we subtract the original image, say i (p. 50-1), from the closing 

ia, i.e., t = ia — i = RBa(i) (p. 50-2). Conceptually, this has the same effect as rolling 

a ball around on the upper surface of the 3-D graph corresponding to the range image 

and retaining the places where the ball does not fit. If the ball is slightly bigger than 

the diameter of the gun, the gun will show up in the result. The next step is to remove 
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appendages and artifacts which have a diameter slightly less than that of the gun. 

This is accomplished by the opening u = <j, (p. 50-3). 

We can locate the antenna in the same way. This time we use SE c which has a 

diameter slightly larger than the antenna, so v = ic — i — RBc(i) (p. 50-4). Again, 

we can remove any artifacts with diameter smaller than that of the antenna by the 

opening w = v<i (p. 50-5). 

About the SEs 

The choice of SEs for feature extraction was relatively easy. Hemispherical functions 

were chosen so that processing would be independent of orientation. The sizes of a 

and b were chosen according to the thickness of the gun and together they form a 

"size-pass filter," passing only appendages smaller than a but larger than b. The SEs 

c and d were selected as components of a smaller "size-pass filter", according to the 

thickness of the antenna. 

5.2.2     Corner Extraction 

With the previous methods of feature extraction, it is assumed that an object has some 

distinguishable appendage. If this is not the case, another feature which can assist the 

recognition of man-made objects is the 3-D corner. Corner detection algorithms can 

be readily tested on images produced by the synthetic data generator. This subsection 

describes an algorithm developed to locate convex1 polyhedral corners (vertices) in 

high-resolution range images. The results of the corner extraction and the SEs used 

are shown on pages 52 and 53. SE a is a hemispherical function; B and C are 2-D 

sets. The other SEs are thinning SEs. 

The object selected for this experiment is a cube and the corresponding range 

'Convex corners were chosen for discussion purposes; a minor change to the algorithm would provide 

for extraction of concave corners. The case where both convex and concave corners are present in the 

same image is not addressed here. 

51 



CO   - 

z a 
UJ - 
2 u 

UJ 
_i 
UJ 

O 
Z 
cc 
D 
t- 
o 
D .^ 
CC * 
t- JC 

V) a 
CO 

z 
o 
u 
UJ 

UJ 
Q 

UJ 
cc 
D 
Q 
UJ 
U 
O 
CC 
Q. 

< 
cc 

</> z 
£   5 O     D 

a 
o a z 
i co So 

pi ss; 
UJO UJ E 
OU OH 

< 
O 

o 
z < 
cc 

& 

o 
o 
-j 
< 
CC _ 
o 2 
¥f > o 

a. 

1 
< 

UJ 
u ■ 
< ■ 
u. 
zz 

< c 

co§ 
Ex 

= • 

< I     I 
z 
cc 
O 
o 

.0 

z 

oc 
o 

oc 
UJ 
z 
oc 
o 
o 
LL 
o 
CO 
UJ 
a. 

o 

52 



(- 
_l 

UJ 
oc 

a 

o 

53 



image is shown in p. 52-1. The corners of any polyhedral object at a given orientation 

can be divided into two categories: exposed-facet corners (E-corners) and hidden- 

facet corners (H-corners). This is illustrated in p. 52-2 for the selected view of the 

cube. It should be noted that the labelling of corners varies as the viewing direction 

is changed. With this in mind, the problem solving approach is as follows: 

1. Detect corner regions. 

2. Localize corners. 

The first step is to find the approximate location of corners of each type. The first 

type of corner to be detected is the H-corner. These corners appear on the occluding 

boundary of the object and can be detected using the rolling ball transform. The 

SE used in the rolling ball transform is the hemispherical function a. If the input 

image is denoted i (p. 52-1), the result of the rolling ball transform is t = RBa(i) 

(p. 52-3). If the object of interest stands out from its background (such as an airplane 

against the sky), the rolling ball will produce large peaks near corners on the occluding 

boundary. To understand this, refer to Figure 5.1 which shows the top view of a cube 

in the vicinity of an H-corner. To compute the rolling ball transform, one can either 

consider a ball rolling on the top surface of the corresponding range image (and a 

closing), or a ball rolling on the bottom of the combined object/background surface 

(and an opening). The second approach is taken in Figure 5.1, where the lengths of 

the parallel segments shown on the graphs at the bottom correspond to the values of 

the transform along two of its cross-sections. Clearly, the maximum values are found 

near the corner and constitute a ridge of constant values. Assuming that this ridge 

is higher than peaks produced by vertical (toward the viewer) object protrusions, the 

H-corners are easily found by thresholding t, producing a binary image with "ones" at 

points where t > threshold. This binary image is then dilated by SE B to produce an 

image of detected H-corner regions (p. 52-4). The dilation by B accounts for effects 

of discretization which can cause fragmentation of the corner regions. This effect is 

discussed in the paragraph below titled, "About the SEs." 
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Figure 5.1.    Peaks in the rolling ball transform. 
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Figure 5.3.    Pixel patterns indicating the presence of corners. 

The next step is to detect E-corners. If one had a line drawing of a polyhedron 

(with hidden lines removed), one would notice that all exposed-facet corners (E- 

corners) appear in the drawing at the intersection of three or more edges (p. 52-2). 

Thus, with a line drawing of a polyhedron, one can detect E-corners (and some H- 

corners) by detecting these edge intersections. This is the approach taken to detect 

E-corners. 

The line drawing is obtained in the following way: first, the rolling ball transform 

of the input i, RBa(i), is thresholded at zero. The "ones" in this binary image indicate 

pixels where RBa(i) > 0. This binary image T is then dilated by B to correct for any 

artifacts caused by digitization, giving U = T@B (p. 52-5). U is then thinned by the 

infinite sequence of 90-degree rotations of the hit-or-miss SEs L, E, and LE2 (Fig. 5.2), 

denoted {L, £,££}«,. This produces the thin line drawing V = U Q {L^E^LE}^ 

(p. 52-6). 

The hit-or-miss transformation can be used to detect the pixel patterns in the thin- 

ning, V, which indicate the presence of edge intersections. Examples of these patterns 

are shown in Figure 5.3. Each of these patterns has one thing in common—the pixel 

neighborhood, when read in a clockwise or counterclockwise direction, contains the 

n o 

o 

'This notation is motivated by the Golay alphabet [62], though it is not identical. 
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C-0 C-90 C-180 C-270 

NC-0 NC-90 NC-180 NC-270 
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Figure 5.4.    Corner-detecting SEs. 

sequence 0,1,0,1,0 (black = 1). In most cases, this pattern indicates the intersection 

of three or more edges, however there is one pixel configuration3 which matches this 

pattern yet does not correspond to the intersection of three or more edges (Fig. 5.4, 

NC-0). Thus, the hit-or-miss transformation with the four 90-degree rotations of C-0 

(Fig. 5.4), denoted {C-0, C-90, C-180, C-270}, gives edge-intersection locations and 

also some "false alarms" (occurences of the four rotations of NC-0). To eliminate 

these "false alarms," one can subtract out occurences of the four 90-degree rotations 

of NC-0, denoted {NC-0, NC-90, NC-180, NC-270}. The rest of the edge intersections 

are found using the hit-or-miss transformation with the four 90-degree rotations of 

C-45 (Fig. 5.4), denoted {C-45, C-135, C-225, C-315}. Thus, the edge intersections, 

W, are extracted from the thinning, V, according to the following: 

W = ((V® {C-0, ... C-270})/(V © {NC-0, ... NC-270})) U (V © {C-45,... C-315}) 

(5.1) 

The binary image W (p. 52-7)4 is "true" near the intersections of three or more 
3One can find other neighborhoods which obey this condition and are not edge intersections. Under 

more careful observation, however, one will find that these configurations are not possible after thinning 

with {L, E, LE}oo is performed. 
*The large, thick "donuts" in p. 52-7 are intended only to draw attention to the single-pixel E-corner 

locations. They are not part of the image. 
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Figure 5.5.    Several responses for one corner. 

edges, yet the locations of these "true" points generally does not coincide with the 

exact locations of corners5. Also, the intersection of more than three edges at a 

corner will, in general, produce several "true" values corresponding to the same corner 

(Fig. 5.5). To solve these problems, the image W can be dilated by a disk C. This 

transforms the image W from ■points to regions corresponding to the presence of 

corners (p. 52-8). 

It is now a simple matter to combine the image of the H-corner regions (p. 52-4) 

and the image of edge-intersection regions6 (p. 52-8) to get an image of all corner 

regions (p. 52-9). 

After the corner regions are labelled7, localization is accomplished by selecting the 

point within each region where the curvature is greatest. The curvature is measured 

as follows (see Figure 5.6 for an example in 1-D): 

1. A point of the corner region is selected. 

5This is due to asymmetries in the thinning process. 
6Note: The E-corner regions constitute a subset of the edge-intersection regions. 
7Although the MM algorithm for region labelling (Section 3.2) could have been used, running it on 

a sequential, general purpose computer is very slow. Thus, a simple labeller described by Winston and 

Horn ([70] p. 131) is used for this step. 
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Figure 5.6.    Corner measurement. 

2. The corresponding point fc in the range image / is dilated by a hemisphere g 

and also by an inverted hemisphere —g. 

3. The curvature is computed according to the following formula: 

£((/aM)-/)>o((/c ®9)-f)~ E((;«e-f)-/)>o((/c ® -§) - f) 
X 47T. (5.2) 

2xE? 

This gives an estimate of the number of steradians taken up by the surface / at 

each point in the corner region. The point which takes up the minimum number 

of steradians is the located corner. 

Results 

The results of the corner extraction are shown on page 53. The originals are all 

different rotations of the same cube. The detected corner regions show up on the 

second row of photographs, and the localized corners show up on the last row. The 

E-corners are labelled by the number of steradians that they take up, as measured 

from the original range images.  Ideally, the measurement should be precisely equal 
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Figure 5.7.    Digitization effects. 

to 7r/2 independent of orientation. It should be noted that this ideal result may be 

hard to obtain when distortions due to perspective are important. 

About the SEs 

The hemispherical SE a was selected for the rolling ball transform, RBa(i), for several 

reasons: 

• It is rotationally symmetric. 

• Its radius of seven pixels is large enough to not fit in most polyhedral edges. 

If the radius is too small, the rolling ball transform will not pick up edges. This is due 

to digitization effects which allow a digital ball to "fit" in regions beneath a digital 

surface where a continuous ball would not fit beneath the corresponding continuous 

surface (see Fig. 5.7). 

The smoothing SE, B, was chosen to reduce fragmentation artifacts produced by 

digitization. An example of such artifacts appearing in the digital case, but not in 

the continuous case, is shown in Figure 5.8. It is clear that different choices for the 

SE a will create different fragmentation artifacts. Thus, the choice of B is directly 

related to that of a. 

The SE C, used to dilate the edge-intersection locations, W, of the thinning, V, 

was selected because: 
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Figure 5.8.    Digital artifacts. 

s 
Figure 5.9.    Corners overlapped by the comer-measuring SE. 

• It is rotationally symmetric. 

• It is assumed that the edge-intersection locations in the thinning, V, are not 

more than the radius of a (seven pixels) away from the exact corner locations. 

This is the case in general. 

The hemispherical corner-measuring SE, a, was selected because its radius was 

large enough to provide a good estimate of the curvature, yet small enough to avoid 

overlapping several corners at one time. An example of this problem is shown in 

Figure 5.9. 
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Figure 5.10.    Ambiguities from edge intersections. 

Limitations 

Besides the limitations which arise because of digitization problems, it should be 

pointed out that the corner extraction algorithm will clearly not work (in its present 

state) for a general polyhedron. If a polyhedron is not convex, edge intersections 

may not correspond to corners (Fig. 5.10). This would lead to erroneous results since 

the algorithm relies on the assumption that edge intersections correspond to either 

E-corners or H-corners. To solve this problem, one would have to select another 

approach. 
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Chapter 6 

Conclusion 

MM provides good techniques for geometric signed analysis. This is particularly im- 

portant for range imagery where there is a direct correspondence between the data 

and the geometry of the world. Once an image feature has been specified geomet- 

rically, it can be extracted using MM. This has been demonstrated particularly well 

with the appendage and corner extraction algorithms of Chapters 5. 

In Chapter 4, function MM proved useful for removing noise from real range 

images and, because of the limited resolution of the real data, both function and set 

MM techniques proved useful for feature extraction. It was also shown that the success 

of morphological techniques is directly related to the degree of a priori knowledge of 

the signal feature to be extracted. Without knowledge of the approximate orientation 

of an object, one is restricted to using rotationally symmetric SEs. 

In Chapter 5, function MM proved useful for 3-D appendage and corner feature 

extraction from high resolution synthetic images. Even in this "ideal" case, however, 

digitization problems affected the performance of MM techniques. As was noted, 

the geometry of an object in the real world can be quite different from that in the 

corresponding digital range image. This problem is especially significant when a 

feature of interest corresponds to just a few pixels. 

In spite of its limitations, MM has high potential for machine vision applications. 
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The basic operations of MM satisfy the criteria of being general and parallel. As 

we have seen in Chapters 3, 4, and 5, algorithms for texture analysis, image coding, 

noise removal, and feature extraction can all be described within the formalism of 

MM. This fact, along with solid theoretical foundations and nice implementation 

properties, make the basic operations of MM highly promising candidates for hardware 

implementation. At this point in time, architectures such as the Cytocomputer [50] 

and the CLIP [53] can support the basic MM operations. The MM algorithms for noise 

removal and 2-D feature extraction have also been implemented by the authors on 

a wafer-scale, parallel image processor simulator. For machines that can access only 

a local pixel window, the optimal decomposition of SEs becomes an important task 

in MM algorithm development. Zhuang and Haralick [46] have recently solved this 

problem for set MM SEs, however, the decomposition of function MM SEs remains 

an open research problem. 

In conclusion, the operations of MM satisfy the criteria set forth for desirable ma- 

chine vision operators: they are general and can be implemented in parallel. They are 

designed for geometric signal analysis and herein lies both the strength and weakness 

of MM-based approaches to vision. Although the techniques of MM alone will not 

enable a computer to see, they go a long way toward this goal. 
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[45] Watson, G.S., "Mathematical Morphology," A Survey of Statistical Design and 
Linear Models, ed. J.N. Srivastava, pp.   547-53, North-Holland, 1975. 

This is a condensed version of the above paper. 

[46] Zhuang, Z.; Haralick, R.M., "Morphological Structuring Element Decomposi- 
tion," CVGIP, Vol. 35, pp. 370-382, 1986. 

In this paper, the theory of optimal SE decomposition is explored. A tree search 
algorithm for SE decomposition is given. 

Architectures 

[47] Dobaj, A.P., "System Architecture of a SIMD Image Processor Optimized for 
Morphologic Processing," Proc. Topical Meeting on Machine Vision, Incline Vil- 
lage, Nevada, March 18-20, 1987. 

This is a brief paper on the PMIP - a 256-processor, SIMD image processor. 
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tocomputer (a single serial processor), the author proposes the use of several 
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